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Abstract. Waves in periodic media, whose propagation is governed by nearest neighbour interaction, are
investigated. The reflection and transmission coefficients are derived for a plane wave incident from medium
1 upon medium 2, without invoking common approximations. The derivation is valid for a class of waves
including magneto- and electro-inductive waves, waves on short loaded dipoles, nanoparticles, coupled
waveguides and acoustic waves in monatomic media. For this last case hitherto unknown microscopic
reflection and transmission coefficients are derived and shown to reduce in the continuous limit to the
well-known expressions in terms of acoustic impedances.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation

1 Introduction

Waves in periodic media have been studied for well over
a century, starting with acoustic waves, followed by X-ray
diffraction, electron diffraction, the band structure of
solids, and waves along a periodic set of electric four-
pole circuits, to mention a few. The best book on the
subject is probably that of Brillouin, published nearly
60 years ago [1], although there are good accounts in many
books on electromagnetic theory, e.g. in that of Collin [2].
A plane electromagnetic wave incident upon a periodic
medium poses a difficult problem. It needs sophisticated
mathematics to find the reflection and transmission coef-
ficients and all the excited higher order modes. For a re-
cent study see Belov et al. [3]. If the complications caused
by the boundary can be disregarded then the solution
can be expressed in much simpler form as presented in
Tretyakov’s book [4].

A logical extension of these studies is to the case when
a plane wave is incident from one periodic medium upon
another one. Generally, solutions for reflection and trans-
mission coefficients are obtained by making approxima-
tions. However, these are unnecessary, and exact solutions
were obtained by Syms [5] nearly 20 years ago for waves
on coupled waveguides and recently by Syms et al. [6] for
magnetoinductive waves introduced earlier by Shamonina
et al. [7,8].

The aim of this paper is to generalise the method
in [5] to solve the boundary problem for all periodic media
in which wave propagation can be attributed to near-
est neighbour interaction. The basic relations for a sin-
gle medium, namely the recursive equation, the wave as-
sumption and the dispersion equation, are introduced in
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Section 2. The equations relating the elements across the
boundary to each other, and their solution for the reflec-
tion and transmission coefficients, are presented in Sec-
tion 3. The continuous limit is discussed in Section 4, the
power relations in Section 5, and examples are given in
Section 6. The special case of acoustic waves is treated
in more detail in Section 7. Further generalisations are
discussed in Section 8 and conclusions drawn in Section 9.

2 Dispersion equation in a single medium

The general arrangement is shown in Figure 1. It is as-
sumed that the temporal variation is in the form exp (jωt),
where ω is the frequency and t is time. It is also assumed
that the same type of waves propagate both in Medium 1
and in Medium 2, that their period is the same in the
direction parallel to the boundary and the incident plane
wave is perpendicular to the boundary. Let us take the
distance between the elements in the periodic medium as
d, and let yn be some property of the nth element. Nearest
neighbour interaction implies that the element n is cou-
pled in some way to elements n − 1 and n + 1. Let this
coupling be expressed by the recursive equation

gyn + h(yn−1 + yn+1) = 0. (1)

Here g and h are independent of space but may vary, for
example, with frequency. Next, we shall assume that a
lossless wave propagates in Medium 1. The wave may be
written as

yn = yoo exp (−jknd). (2)

Here yoo is a constant and k is the propagation coefficient.
Substituting equation (2) into equation (1) we obtain the
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Fig. 1. General geometry for boundary matching between two
periodic media.

dispersion equation in the form:

g + 2h cos (kd) = 0. (3)

The simple equations (1–3) form the basis for analysing
a wide variety of wave propagation problems, as we now
show.

3 Reflection and transmission coefficients

In Medium 2 we shall assume that the coefficients of the
recursive equation are g′ and h′. Having described the be-
haviour of the elements inside Media 1 and 2, next we look
at the boundary. As shown in Figure 1, the columns near-
est to the boundary are denoted ‘0’ in Medium 1 and ‘1’ in
Medium 2. For the elements in these columns, the symme-
try is broken. Crucially, the coupling across the boundary
is not the same as the coupling towards the interior of the
medium. Hence the nearest neighbour interactions across
the boundary are described by the equations

gyo + hy−1 + hby1 = 0

g′y1 + hbyo + h′y2 = 0. (4)

Here hb is the coupling constant across the boundary.
Equations (4) may be solved exactly, without the approx-
imations common in almost all earlier works. For perpen-
dicular incidence, the reflected and transmitted waves may
be taken as:

yn = yo{exp(−jnkd) + R exp(jnkd)} in Medium 1

yn = yoT exp(−jn[kd]′) in Medium 2. (5)

Here [kd]′ is the phase change per element in Medium 2,
and R and T are the reflection and transmission coeffi-
cients, respectively.

The two unknowns R and T may be found from equa-
tions (4) and (5). Using the dispersion equations to elimi-

nate g and g′ we obtain after a moderate amount of alge-
bra:

R = {h2
b exp(−j[kd]′)−hh′ exp(−jkd)}/{hh′exp(jkd)

− h2
b exp(−j[kd]′)}

T = 2jhhb sin(kd)/{hh′ exp(jkd)−h2
b exp(−j[kd]′)}. (6)

Equations (6) are more complicated than most commonly
presented similar expressions. However, they can be sim-
plified in the case when h = h′ = hb, which implies that
the coupling coefficients are identical in the two media
and across the boundary as well. This situation can arise
only when the sole difference between the two media is
that g �= g′. Consequently, the values of k and k′ calcu-
lated from the dispersion equations, will be different and
equations (6) reduce to the simple form

R = {exp(−j[kd]′)−exp(−jkd)}/{exp(jkd)−exp(−j[kd]′)}
T = 2j sin(kd)/{exp(jkd)−exp(−j[kd]′)}. (7)

Equations (7) are immediately recognisable as more ‘clas-
sical’ coefficients. We also note that an expression identical
to equation (7) appears in Tretyakov’s book [4], but the
underlying physics is quite different in the two cases. Here,
we are concerned with the reflection and transmission of
waves propagating in different periodic media, whereas
Tretyakov’s expression is valid when a plane electromag-
netic wave is incident upon a periodic medium and higher
order modes at the boundary can be disregarded. It is a
coincidence that the same result is obtained.

4 The continuous limit

In the limit when the number of elements is very large and
the wavelength is much longer than the distance between
the elements, kd � 1 and the difference equation (1) can
be reduced to the differential equation

gy + h{d2y/dx2 − 2y} = 0 (8)

where x is a continuous distance along the array. The dis-
persion equation can be obtained by solving the above
differential equation or, alternatively, by expanding equa-
tion (3) assuming that kd � 1. In either case we obtain

(kd)2 = 2 + g/h. (9)

It is instructive to look now at equations (7), the simplified
form of the reflection and transmission coefficients, in the
continuous limit. They reduce to

R = (k′ − k)/(k′ + k)

T = 2k/(k′ + k). (10)

Equations (10) are quite familiar expressions, occurring
for example when Schrödinger’s equation is solved for
an electron wave incident upon a potential barrier (see
e.g. [9]). There are no periodic media in that case, simply
a wave incident from one medium upon another one.
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5 Power relations

Having found the reflection and transmission coefficients
we still need to define the power in the wave. Returning to
equation (1), we note that the constant terms g and h in
equation (1) are generally either both real or both imag-
inary (see later examples). Thus, we may replace them
with their moduli without loss of generality. Multiplying
by y∗

n, we then obtain:

|g|yny∗
n + |h|(yn+1y

∗
n + yn+1y

∗
n) = 0. (11)

Forming a similar equation from the complex conjugate of
equation (11), and then subtracting, we obtain:

|h|{(y∗
n+1yn − yn+1y

∗
n) − (y∗

nyn−1 − yny∗
n−1)} = 0. (12)

This result implies that the term |h|(y∗
n+1yn − yn+1y

∗
n) =

|h| Im (y∗
n+1yn) is invariant with respect to n, and hence

equation (12) represents a form of power conservation in
a lossless system. In fact, the quantity

P = C|h| Im (y∗
n+1yn) (13)

can represent local power flow, if the constant C is de-
termined from the product of group velocity and stored
energy, as we have shown elsewhere for magneto-inductive
waves [6]. The presence of the term |h| serves to distin-
guish different media, and is important in boundary prob-
lems, as we now show.

If equation (13) represents power flow, then it should
be conserved across a boundary, i.e. we should find the
same value both in Medium 1 and in Medium 2. The vari-
able yn in Medium 1 is given by the upper equation (5).
Substituting it into equation (13) gives the power in the
form

P = C|yo|2|h|(1 − |R|2) sin(kd). (14)

In Medium 2, yn is given by the lower equation (5). Substi-
tuting it into equation (13) we obtain similarly the power
in Medium 2 as

P ′ = C|yo|2|h′||T |2 sin[(kd)′]. (15)

Substituting R and T from equations (6) into equa-
tions (14) and (15) we can show that P = P ′, i.e. power
is conserved across the boundary, as it should be.

6 Examples

As mentioned in the Introduction, the relationships de-
rived are applicable to a fair number of different waves.
We shall give below several examples. We begin with mag-
netoinductive waves, for which reflection and transmis-
sion coefficients have already been derived [6] for the two-
dimensional case.

(a)

(b)

Fig. 2. Magneto-inductive waveguides in (a) axial and (b)
planar configurations.

6.1 Planar and axial configurations
of magnetoinductive waves

Figures 2a and 2b show one-dimensional arrays of capaci-
tively loaded loops in the planar and axial configurations
respectively. The variable is now the current flowing in the
nth element, which is coupled to the currents in the n−1th
and n+1th element. It follows from Kirchhoff’s Law that

ZoIn + jωM(In−1 + In+1) = 0. (16)

Here Zo is the self-impedance and M is the mutual in-
ductance between the loops. The difference between the
axial and planar configurations is the sign of the mutual
inductance: it is positive for the axial and negative for the
planar case.

At a given frequency we may now obtain the reflection
and transmission coefficients by substituting into equa-
tions (6)

h = jωM, h′ = jωM ′ and hb = jωMb (17)

where M , M ′ and Mb are the mutual inductances in
Medium 1, Medium 2 and across the boundary respec-
tively. The phase changes in the exponential terms, kd
and (kd)′, may be obtained from the dispersion equations
for a given ω, as noted above.

6.2 Electroinductive waves

Magnetoinductive waves may travel on magnetically cou-
pled elements, e.g. on a set of split ring resonators. Beruete
et al. realised [10] that by taking the dual of a split ring res-
onator which exchanges metal for hole, and hole for metal
as shown in Figure 3, they can retain the resonant charac-
ter of the elements but propagate the electric equivalents
of magnetoinductive waves. The coupling is now electric
described by a mutual impedance Zm which may have dif-
ferent values in the two media and across the boundary. In
order to find the reflection and transmission coefficients,
we need to substitute

h = Zm, h′ = Z ′
m and hb = Zmb (18)

into equations (6).
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Fig. 3. Electro-inductive waveguide based on a patterned
metal film.

(a)

(b)

Fig. 4. Dipole chains in (a) planar and (b) axial configurations.

6.3 Waves on axial and transverse electric dipole
chains

The elements considered are now short dipoles loaded with
an impedance at the centre [11] which could tune the ele-
ments to the required resonance frequency. They may be
arranged axially or side-by-side as may be seen in Fig-
ures 4a and 4b. The variable is the electric field across the
gap of the dipoles. The coupling between them is due to
the longitudinal and transverse electric fields for the ax-
ial and side-by-side configurations respectively. For finding
the effect of the boundary the same arguments apply as in
the previous two sections. The coupling is electric hence
the relevant mutual impedances need to be substituted
into equations (6).

6.4 Plasma waves on metallic nanoparticle chains

It has been recently shown (see e.g. [12]) that waves
on chains of small (relative to the wavelength) metallic
spheres may propagate in the form of either longitudinal
or transverse electric dipoles. Their resonant character is
due to the plasma resonance of the spheres and the cou-
pling between them is dipolar. Both forward and backward
waves can be obtained with transverse and longitudinal
dipoles respectively. The coefficients g and h are given in
reference [12] as

g = 1 − ω2/ω2
o, h = 2r3

o/d3,

hb = 2r3
o/d3

b , ωo = ωp/31/2 (19)

for transverse dipoles, and

g = 1 − ω2/ω2
o, h = 4r3

o/d3, hb = 4r3
o/d3

b (20)

for longitudinal dipoles, where ro is the radius of the
metallic sphere, ωo is the resonance frequency, ωp is the
plasma frequency, and d is the distance between the el-
ements. The spherical array in Medium 2 may be made
of a different metal so it may have a different plasma fre-
quency, ω′

p and a different distance between the elements,

Fig. 5. Co-directionally coupled dielectric waveguide array.

d′. The distance between the elements on either side of
the boundary is db. Note that for simplicity ro is assumed
to be the same in both media. The parameters in both
media and across the boundary can be substituted once
more into equations (6) to obtain the reflection and trans-
mission coefficients.

6.5 Coupled waveguide arrays

The original problem [5] that led to the present approach
was the guiding of waves by an array of coupled opti-
cal waveguides carrying power from a set of mode-locked
diode lasers. A schematic representation of the arrange-
ment of waveguides is shown in Figure 5. Assuming nearest
neighbour coupling and identical velocities of propagation
along the uncoupled waveguides the following, differential
equation relating the amplitudes of the modes in adjacent
waveguides with distance z along the guide can be derived

dAn/dz = −jκ(An−1 + An+1) (21)

where An is the amplitude of the mode in the nth guide
and κ is the coupling coefficient between neighbouring
guides. Assuming propagation along the waveguides in the
form

An = En exp(−j∆βz) (22)

where ∆β is a correction to the propagation coefficient β0

of the unperturbed guide, equation (21) may be rewritten
as

∆βEn = κ(En−1 + En+1). (23)

It may be seen that equation (23) corresponds to the
generic form of equation (1). The coupling across the
boundary being κb we may obtain the reflection and trans-
mission coefficients by substituting

h = −κ, h′ = −κ′ and hb = −κb (24)

into equations (6). In this case, the results of [5] are ob-
tained.

7 Acoustic waves in solids

None of the examples given in Section 6 cover familiar ter-
ritory. They are concerned with waves that have received
attention only in the recent past and this is the first time
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R =
hh′{exp(−j[kd − (kd)′] − 1} − hq′(exp(−jkd) − 1) − h′q(exp(j(kd)′) − 1)

[h2
b + {q − h exp(jkd)}{q′ − h′ exp(j(kd)′)}]

T =
−2jhhb sin(kd) exp(j(kd)′)

[h2
b + {q − h exp(jkd)}{(q′ − h′ exp(j(kd)′)}] . (29)

that their reflection has been discussed. The problem of a
boundary between two monatomic acoustic media is how-
ever an old subject which has been amply discussed in
the literature. We have not included it among our exam-
ples in the previous section partly because the problem is
somewhat more complicated and partly because in that
case we do know the macroscopic equations to which the
microscopic equations should reduce.

The transition from the microscopic case to the macro-
scopic one has had some difficulties in the past. For exam-
ple, Brillouin [1] made the entirely unphysical assumption
that the mass on the boundary is equal to the average
mass. We wish to show that our approach leads to the
correct macroscopic equations without the need for such
an assumption.

The starting point for describing longitudinal acoustic
waves in the monatomic case is well known (see e.g. [13]).
The interaction between nearest neighbours may be ob-
tained by writing the equation of motion for the nth atom
in the chain. It takes the form

md2yn/dt2 = −f(yn − yn−1) − f(yn − yn+1) (25)

where yn stands for the displacement of the nth atom, m
is the mass, t is time, and f is the force constant. With
the exp(jωt) time dependence the generic coefficients of
equation (1), g and h may be easily obtained from equa-
tion (25) as

g = −ω2m + 2f and h = −f. (26)

The same equation appears in Medium 2 but m and f have
there the ‘dash’ superscript. So far there is no deviation
from the description in Section 2. However, when we take
into account the coupling across the boundary, the result-
ing equations are slightly more complicated than those of
equations (4). They take the form

(g + q)xo + hx−1 + hbx1 = 0

(g′ + q′)x1 + hbxo + h′x2 = 0. (27)

Two new constants q and q′ can be seen, which are related
to values on the boundary as:

q = h − hb = fb − f and q′ = h′ − hb = fb − f ′. (28)

From here on we shall use the same approach as before.
The reflection and transmission coefficients can now to be
obtained from equations (6) in the form

see equation (29) above

For the continuous case when kd, (kd)′ � 1 equations (29)
reduce to the well-known forms

R = (Z ′
a − Za)/(Z ′

a + Za) and T = 2Za/(Z ′
a + Za) (30)

where
Za = (fm)1/2 and Z ′

a = (f ′m′)1/2 (31)

are the acoustic impedances [13] in Media 1 and 2 respec-
tively. Note that the acoustic impedance plays an entirely
analogous role to the wave impedance in electromagnetic
boundary reflection phenomena.

8 Further generalisations

The approach used in the present paper can be easily gen-
eralised to two-dimensional problems, and this has already
been done for magneto-inductive waves in [6]. The tech-
nique for finding the amplitudes of the reflected and re-
fracted waves is still the same but it is necessary first to
find the angle of refraction. If the 2D dispersion equations
are known on both sides of the boundary, then a simple
construction yields the angle of the refracted wave pro-
vided the incident wave is known.

Generalisation to wave propagation governed by higher
order interactions is also straightforward. If, for example,
next-nearest neighbour interactions are involved then we
need to consider two columns on either side of the bound-
ary and write the recursive equations for four elements,
yielding four equations. There are then four unknowns, the
reflection and transmission coefficients as before, but in
addition there are the unknown amplitudes of two evanes-
cent waves, which will decline away from the boundary.

We would also like to add that the theory is still valid
when both electric and magnetic coupling are present, as
long as only nearest neighbours are affected. This would
happen (for example) in a chain of Split Ring Resonators
if the cross-polarization tensor pointed out by Marques
et al. [14] were taken into account. The calculation of the
coupling coefficient would then be more complicated, but
it would still be possible to calculate unique values of h,
h′ and hb.

9 Conclusions

The reflection and transmission of a plane wave at the
boundary of two periodic media have been investigated.
It has been shown that reflection and transmission coeffi-
cients can be derived for a generic case valid for a variety
of waves whose propagation may be described by nearest-
neighbour interaction, e.g. magneto- and electro-inductive
waves, waves on short dipoles, on nanoparticles and on
coupled waveguides. The boundary problem for acoustic
waves in a monatomic medium has also been treated.

It has been shown that the approach is suitable for de-
riving new microscopic equations for the reflection and
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transmission coefficients without any artificial assump-
tions or approximations about the boundary. It has fur-
ther been shown that the known macroscopic equations in
terms of acoustic impedances may be obtained from the
microscopic equations, in the continuous limit.

The authors wish to thank Dr. E. Shamonina for a number of
interesting discussions.
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